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Abstract Classification is used to solve countless prob-

lems. Many real world computer vision problems, such

as visual surveillance, contain uninteresting but com-

mon classes alongside interesting but rare classes. The

rare classes are often unknown, and need to be discov-

ered whilst training a classifier. Given a data set active

learning selects the members within it to be labelled for

the purpose of constructing a classifier, optimising the

choice to get the best classifier for the least amount of

effort. We propose an active learning method for scenar-

ios with unknown, rare classes, where the problems of

classification and rare class discovery need to be tackled

jointly. By assuming a non-parametric prior on the data

the goals of new class discovery and classification refine-

ment are automatically balanced, without any tunable

parameters. The ability to work with any specific classi-

fier is maintained, so it may be used with the technique

most appropriate for the problem at hand. Results are

provided for a large variety of problems, demonstrating

superior performance.

Keywords Active Learning · Rare Class Discovery ·
Classification

1 Introduction

Classification is an important technique, key to solving

innumerable problems in areas such as computer vision.

A training set is collected, and a domain expert labels
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Fig. 1 A visualisation of the imbalance in the faces data set
(Huang et al., 2007; Guillaumin et al., 2009), showing how
many exemplars exist (y axis) for the 128 most common peo-
ple (x axis, faces shown for the 1st, 8th, 16th, 32nd, 64th,
96th and 128th most popular classes). The full data set has
9952 people in it. For a real world data set such as this, rare
classes often are unknown and need to be discovered before
they can be classified (see text).

each exemplar in the set with the desired (discrete)

answer. The relationship between the exemplars and

the labels is then learnt by a classification algorithm,

such that the answer can be estimated for future exem-

plars. As domain experts are not cheap the greatest ex-

pense often lies in the labelling step. In many real-world

computer vision problems, such as visual surveillance,

computer-aided diagnoses for medical imaging and im-

age segment labelling, the proportion of exemplars in

different classes is imbalanced - the majority belong to

uninteresting background classes whilst the interesting

classes have few exemplars. This imbalance can dramat-

ically increase the labelling cost, as many more exem-

plars have to be labelled by the domain expert to have a

reasonable chance of including all the rare classes. Fur-

thermore, the interesting minority is often unknown in

advance. To give examples:
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– In the Sloan Digital Sky Survey most of the survey

images of galaxies and quasars capture known phe-

nomena, whilst unusual phenomena, that could be

evidence of new science, constitute only 0.001% of

the total data set (Pelleg and Moore, 2004).

– When detecting buildings from aerial/satellite im-

agery the percentage of positive examples for one

data set (Maloof et al., 2003) is less than 5%. Build-

ings can come in many shapes and materials, and for

military scenarios buildings may be camouflaged -

deliberately designed to look like something else en-

tirely.

– Figure 1 demonstrates the inherent imbalance in the

faces data set (Huang et al., 2007). This data set

has been constructed by extracting face images from

news articles on the Internet over a 12 month pe-

riod - it shows the classical power law bias, with a

few people dominating the headlines whilst the vast

majority get few mentions. As a sampling of current

media interest new classes can appear at any time,

when events push a previously unknown individual

into the news. Class discovery thus will never cease.

To classify rare classes one typically needs to exhaus-

tively label a sizable data set, to obtain sufficient in-

stances of each rare class. Such a manual labelling pro-

cess is often prohibitively expensive, rendering super-

vised learning impractical.

Active learning (Settles, 2009) offers a solution. It

selects the exemplars to be labelled, with the choice

made to minimise the number of labels required to train

a good classifier. Because we have unknown classes that

are also rare there are two competing goals to consider

- to find all the rare classes, and to refine the bound-

aries between the currently known classes. Both of these

behaviours will improve classification performance - if

a class is unknown then the classifier will incorrectly

classify all instances of that class, whilst boundary re-

finement is needed to get good performance for classes

that have already been discovered. However, most ex-

isting active learning methods either assume that all

classes are known and thus focus on the classification

problem (Settles, 2009), or focus on the class discovery

problem only (Pelleg and Moore, 2004; He and Car-

bonell, 2007; Vatturi and Wong, 2009). The approaches

that try to meet both goals simultaneously (Hospedales

et al., 2011; Stokes et al., 2008) are heuristic, and have

free parameters that need tuning for each scenario. It

should be noted that discovering rare classes is often

less of an improvement for classification performance

than refining the boundary between common classes.

Consequentially it does not make sense to first perform

discovery then boundary refinement, particularly as it

is impossible to know when all classes have been found.

Instead the two goals have to be considered simultane-

ously and queries made accordingly.

We propose a novel active learning approach, which

automatically balances the two competing goals, with-

out the need to tune parameters. It is a pool based ap-

proach - it iteratively selects an exemplar from a pool

and asks the user to label it. During each iteration the

model is updated with the new label, so it can be used

to select the next exemplar from the pool. The selection

proceeds in three steps. Firstly, for each exemplar in

the pool the probability of it belonging to each existing

class, and belonging to a new class, are calculated, un-

der a Dirichlet process (DP) assumption. Secondly, the

probability that the instance will be misclassified is cal-

culated. Misclassification probability is an uncertainty

based method, that works to improve the boundary be-

tween existing classes (Settles, 2009); however, because

a DP assumption allows the probability of belonging to

an unknown class to be factored in, it also achieves the

goal of class discovery. The balance between the two

goals is determined by the concentration parameter of

the DP, which is automatically inferred. Finally, a sin-

gle instance is selected, based on the estimated chances

of misclassification. Our key contribution is this novel

active learning criterion, which is specifically designed

to balance the two competing goals of discovery and

classification. Furthermore, its implementation is sim-

ple, it has no tunable parameters and it works with any

probabilistic classifier1.

In the following section the relationship between

this work and others is explored. Section 3 details the

actual algorithm, after which it is evaluated in section

4. Finally, conclusions are given in section 5.

2 Related Work

Active learning is a long standing (Angluin, 1988) and

expansive field - the survey of Settles (2009) gives an

overview, whilst Olsson (2009) also gives a literature re-

view, but focused on natural language processing alone.

Such techniques can be broken down into two parts -

a learning algorithm and an active learning criterion,

which are often integrated and then targeted at a spe-

cific problem domain. The criterion is responsible for

determining which exemplars are to be labelled. As we

are proposing a domain-agnostic and learner-agnostic

approach it is the criterion that will now be consid-

ered - there are only a few specific approaches, as most

papers are about adapting an approach to a specific

domain or learning technique.

1 An implementation is available from http://thaines.com

http://thaines.com
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Random sampling2 is the simplest possible criterion,

where exemplars are selected at random to be labelled.

Despite its simplicity when dealing with balanced data

the odds are that each random item is a new class, and

it will often do surprisingly well. It is inappropriate for

imbalanced data however, as the odds of selecting a rare

class can become arbitrarily small.

2.1 Query by uncertainty

Uncertainty criteria (Lewis and Gale, 1994) select in-

stances for which the classifier is uncertain - they are

thus good at refining the boundaries between classes.

Multiple uncertainty methods exist (Settles, 2009): One

commonly used technique is based on entropy (Settles,

2009) - the entropy of the class membership distribution

for each exemplar is calculated, and the highest scoring

selected. A high entropy indicates a lot of uncertainty in

the classification of an exemplar, with a particular em-

phasis on exemplars for which many classes are consid-

ered to be a reasonable classification possibility. Lewis

and Gale (1994) deal with binary classification, and ex-

plicitly select the exemplar with membership probabil-

ity closest to 0.5, the class boundary. Culotta and Mc-

Callum (2005) generalise this idea to multiple classes,

by selecting the exemplar for which the classifier is least

confident. This is related to our approach as it is opti-

mising the same goal - they both select the exemplar

that is most likely to be misclassified, but it only con-

siders known classes, hence it can only improve class

boundaries. Vlachos et al. (2010) use a semi-supervised

Dirichlet process mixture model to cluster a given data

set; active learning with the entropy approach is used

to select the same-cluster/different-cluster constraints

used to supervise the clustering. Whilst superficially

similar to our approach they are solving a different

problem (boundary refinement) and using Dirichlet pro-

cesses for classification only, not for active learning. In

contrast, in our work Dirichlet processes are used to

develop a new active learning criterion for both rare

class discovery and class boundary refinement. The pro-

posed criterion can be used with a classifier other than

a Dirichlet process mixture model (e.g. the incremental

kernel density estimation method used for classification

in the experiments described in Section 4).

2.2 Query by committee

Query by committee (QBC) (Seung et al., 1992) re-

quires the existence of multiple classifiers for the la-

belled data, and consists of selecting exemplars based

2 Sometimes referred to as passive learning.

on a measure of disagreement between them. Obtain-

ing multiple classifiers can be explicit, or it can in-

volve a probability distribution over the classifier, from

which multiple specific classifiers can be drawn. Clas-

sifiers that include a random element can provide this

capability, e.g. boosting and bagging Abe and Mamit-

suka (1998). Taking the probabilistic interpretation the

committee members can be integrated out, using, for in-

stance, an uncertainty-based metric, but this does not

utilise disagreement. A common measure of disagree-

ment is to let each member vote for the exemplars class,

treat this as a probability distribution and calculate the

entropy (Dagan and Engelson, 1995). McCallum and

Nigam (1998) provide an alternative, where they sum

the Kullback-Leibler divergence between each commit-

tee member’s probabilistic assignment and the consen-

sus of the committee, calculated by averaging. Query

by committee works because it considers the space of

classifiers that fit the data, and selects exemplars to

maximally reduce that space, to get the best classifier

quickly. This tends to focus on outliers however, at the

expense of boundary refinement.

2.3 Expected error reduction

Expected error reduction (Roy and McCallum, 2001)

selects the exemplar from the pool that will minimise

an estimate of future error. For each exemplar it con-

siders the model after it has been updated with each

possible label, estimating the error of each model using

all exemplars. This includes those for which the class

is known, for which it is a direct comparison, but for

exemplars still in the pool it uses the probabilistic la-

belling of the current model. The expected reduction

is then calculated for each exemplar in the pool, and

the exemplar with the largest chosen. Whilst arguably

the best approach for boundary refinement, it does not

do class discovery, and is computationally expensive, so

much so that sampling and efficient incremental learn-

ing techniques are required (Roy and McCallum, 2001).

The approximation of expected error for a future model

state is problematic, and can result in it selecting ex-

emplars that confirm the current model.

Error reduction may be the obvious goal, but there

are alternate criteria that may approximate it, with a

more reasonable (though still high) computational de-

mand. Model change (Settles et al., 2008) selects exem-

plars that are likely to cause a large change for the clas-

sification models parameters. In principal information

resulting in a large parameter change is of greater value

than minor tweaks, though it very much depends on the

meaning of the parameters. Variance reduction (Cohn

et al., 1994) selects exemplars to reduce the variance
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of the model, which can be interpreted as making the

model more certain in its answers - it is related to QBC

in this respect. Cohn et al. (1994) applied this to regres-

sion. The concept of a version space was introduced by

Mitchell (1982) - it is defined as the set of model pa-

rameters that correctly classify the currently labelled

data. Tong and Koller (2000) introduce a margin-based

active learning method for SVMs. Selection from the

pool is driven by reducing the size of the version space

as quickly as possible, to find the best model in the

least number of queries. Whilst the concept is sound

their implementation requires that the data be separa-

ble, which is fatal in many real world scenarios.

2.4 Discovery

Most existing active learning studies assume that all

classes are known a priori. Hodge and Austin (2004)

give the likelihood criterion, which proceeds by query-

ing the exemplars that have the lowest probability ac-

cording to the classifier’s current model. Whilst often

considered to be an uncertainty criterion it is better

suited to finding new classes than refining the bound-

aries of existing classes, hence its inclusion here. Likeli-

hood is limited by its inability to distinguish new classes

from outliers, and to find classes that are inseparable

from already detected classes.

Recently there have been a number of works that ex-

plicitly focus on the rare class discovery problem. Pelleg

and Moore (2004) use an EM classifier with Gaussian

distributions and adopt a variant of the likelihood crite-

rion. Whilst it is specifically for finding rare classes the

total number of rare classes must be provided up front

to set the number of EM clusters. The model and active

learning method are also inseparable. He and Carbonell

(2007) perform density estimation and query exemplars

based on identifying local maxima in the density using

gradients. Like Pelleg and Moore (2004) this requires

knowing how many unknown classes exist; additionally

it also needs an estimate of how many exemplars be-

long to each class - for real problems this is unreason-

able. Vatturi and Wong (2009) also take a density esti-

mation approach. Mean shift at multiple scales is used

to cluster the examples in the pool, and for each clus-

ter the example nearest to the centre is selected to be

queried. It gives strong performance for rare class dis-

covery. However, both Vatturi and Wong (2009) and He

and Carbonell (2007) avoid interacting with the clas-

sification model. This is advantageous as it applies no

restriction on the model, but problematic as it can only

work to find new classes, not to improve the classifica-

tion model, so poor results are expected for classifica-

tion. Our approach can also work with any classifica-

tion method, its only restriction being a requirement

that the model provide probabilistic answers. It inter-

acts with the classifier, and can hence work to improve

classification performance.

2.5 Discovery and boundary refinement

This is the approach to which the presented (Haines

and Xiang, 2011) belongs - where the discovery of new

classes and refinement of the class boundaries for known

classes are considered within a single framework. Stokes

et al. (2008) work on network intrusion detection, where

they treat the two goals separately. Batches of exem-

plars to label are provided, where some members have

been selected based on uncertainty, and some have been

selected due to being outliers; the ratio between the

types is fixed. This does not work very well - at the

start of training class discovery provides the greatest

value, but as the process runs and all the classes are

found it needs to focus on class boundary refinement.

Hospedales et al. (2011) resolves this issue by heuris-

tically selecting which approach to use. The two ap-

proaches are a generative classifier (kernel density esti-

mate) with likelihood based selection, and a discrimi-

native model (support vector machine), with selection

based on uncertainty. As the querying progresses it switches

between the models based on their past performance.

This initially means it mostly uses the generative model

to find new classes, but latter tends to be discrimina-

tive, to refine the boundary between classes. This is

ideal as generative tends to work best for classification

at the start, when there are few labelled exemplars,

whilst discriminative models are ultimately better, but
only when given enough data. Not surprisingly, it out-

performs previous active learning methods which are

designed for solving either class discovery or classifica-

tion, not both. However, the method is entirely heuristic

and includes parameters that need to be tuned for each

scenario. Our approach shows similar behaviour when

it comes to transitioning between discovery and refine-

ment, but this behaviour is induced by the Dirichlet

process assumption, without the need for heuristics.

2.6 Variations

We present pool based learning. This consists of having

a pool of exemplars from which to choose the next one

to be labelled. An alternate scenario is stream based ac-

tive learning (Cohn et al., 1994) - in this case exemplars

arrive continuously, and are not stored, so an instanta-

neous decision is required for each on if it should be

given to the domain expert or not.
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Active learning is traditionally applied to classifica-

tion, as we do, but can also be applied to regression

(MacKay, 1992). MacKay (1992) is actually concerned

with experiment design, where one selects the most

informative scientific experiments to run with limited

time/budget, an area closely related to active learn-

ing. Transfer learning is related in some situations, by

virtue of handling the relationship between known and

unknown classes. An example of this is Lee and Grau-

man (2010), which uses the relationship between known

classes and unknown classes to automatically infer the

unknown classes, ready for human verification followed

by further learning. Reinforcement learning (Kaelbling

et al., 1996) is also closely related to the presented kind

of active learning, via the exploration-exploitation prob-

lem.

3 Method

Given a pool of unlabelled instances the algorithm con-

sists of a loop containing three steps,

1. A specific exemplar is selected from the pool.

2. It is labelled by the domain expert.

3. The model is updated with the new labelled exem-

plar. A previously unseen label will result in the

creation of a new class in the model.

Our approach is responsible for the first step, and is

itself broken down into three tasks,

1. For each exemplar a distribution over which class it

belongs to is estimated, using the current model. It

uses the Dirichlet process assumption to also calcu-

late the probability of it belonging to an unknown

class.

2. The probability of misclassification is calculated for

each exemplar, which includes the possibility of it

being misclassified due to it belonging to a new,

unknown class.

3. An exemplar is selected, based on the misclassifica-

tion probability.

These three tasks are detailed in the following subsec-

tions. Additionally a discussion of when to stop and

a demonstration of the algorithms behaviour are also

provided. Alternative formulations of the proposed ap-

proach are discussed in the appendix.

3.1 New class probability

Calculating the probability that an instance comes from

an unknown class is problematic, as, by definition, noth-

ing is currently known about the unknown classes. To

resolve this it is assumed that a generative model of the

data can be used, specifically a Dirichlet process (DP)

mixture model. This is a valid assumption for most clas-

sification problems (Sethuraman, 1994).

A Dirichlet process (Ferguson, 1973) is typically used

for non-parametric Bayesian models, e.g. density esti-

mates (Escobar and West, 1995) and topic models (Teh

et al., 2006). For the purpose of active learning how-

ever two properties are important: that it has cluster-

ing behaviour (Teh and Jordan, 2010), such that it ex-

pects the instances to be grouped into discrete classes;

and that it considers an infinite number of classes, and

hence dynamically adjusts the number of classes given

the data.

The Dirichlet process may be denoted asDP (α,G0),

where α is its concentration parameter andG0 is its base

measure. A draw from a DP provides a probability dis-

tribution over draws from the base measure, in the form

of a Dirichlet distribution with infinitly many mem-

bers. The clustering behaviour occurs because, even if

the base measure is continuous, draws from it can be re-

peated when you draw from the infinite Dirichlet distri-

bution. The stick-breaking process (Sethuraman, 1994)

models this behaviour explicitly. Intuitively, we start

with a stick of length 1, representing the entire proba-

bility mass, and keep breaking it in two. Each time we

break it we get two parts - one is assigned to a draw

from the base measure, and its length is the probability

of drawing that particular item from the distribution

we are generating, whilst the second part goes on to

the next break. Specifically, this process generates an

infinitely large set of sticks, of length si, i ∈ {0, 1, . . .},

si = s′i

i−1∏
j=1

(1− s′j) (1)

where s′i can be thought of as the breaking ratio at

each step. It is drawn from a beta distribution, which

is dependent on the concentration parameter

s′i ∼ β(1, α) (2)

The concentration parameter therefore influences how

much of each break goes to the current stick and how

much is shared by future sticks. In the context of a

mixture model, where each stick represents a cluster, a

low value means most of the probability mass will be

within a few clusters, whilst a high value means it is

shared by many.

For the purpose of active learning all we need to

calculate is the marginal posterior, i.e. given

G ∼ DP (α,G0) (3)

ci ∼ G (4)
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Fig. 2 A representation of the Chinese restaurant process -
customers sitting around tables with the chosen menu item
in the centre. Under each table the probability of an arriving
customer choosing it is given. If a person were to arrive at (a)
and sit at the empty table the next state would be (b).

where ci is the class of an exemplar it is defined as

P (ci|{cj ; j ∈ Ji}, α,G0) ∝ (5)∫ ∏
j∈J

P (cj |G)P (G|α,G0)dG (6)

Ji = J \ {i} (7)

J = {1, . . . , n} (8)

where n is the number of labelled exemplars. It is given

by the Chinese restaurant process (Blackwell and Mac-

Queen, 1973). The Chinese restaurant process is an

analogy consisting of a restaurant containing an infi-

nite number of tables at which customers sit. Each ta-

ble represents a cluster in the mixture model, whilst

the customers represent exemplars from the pool. On

each table only a single dish is served, representing a

single choice from the menu. This represents a draw

from the base measure, and for active learning is the

class associated with the cluster. When new customers

arrive they either sit at a table with existing patrons,

and consume the dish already assigned to the table, or

they choose a previously unused table, for which a new

dish is selected from the menu. These correspond to

the instance belonging to an existing class and a new

class, respectively. Each of the in-use tables is chosen

proportional to the number of customers already sitting

at them, whilst a new table is chosen proportional to

the concentration parameter. Note that whilst an infi-

nite number of tables theoretically exist, corresponding

to the components of the infinitely sized Dirichlet dis-

tribution, only used tables need to be tracked, making

this a finite construction. This is illustrated in figure 2.

For each instance in the pool of unlabelled instances

the aim is to compute the probability of it belonging to

each existing class, and of it belonging to a new class,

conditional on all previous instances for which the do-

main expert has provided a label. This is assuming a

mixture-like model, where each table in the DP corre-

sponds with a class assignment. Note that this is not

a requirement for the classification model to also be a

mixture model; it can be any model where Pc(data|class)

can be calculated. For the moment the existence of a

prior, P (data), is also assumed, such that Pc(data|class)

is its posterior, using Bayes rule. Accordingly, the prob-

ability distribution for an instance is given as

Pn(c ∈ C ∪ {new}|d) ∝
mc∑

k∈C mk+α
Pc(d|c) if c ∈ C

α∑
k∈C mk+α

P (d) if c = new
(9)

where d is the data for the considered instance, C is

the set of known classes, mc the number of instances

labelled with class c and α is the concentration param-

eter for the DP. Once normalised this provides a distri-

bution for each instance that consists of the probability

of the instance belonging to each of the known classes

as well as to an unknown class. Two issues remain -

how to set the concentration parameter and how to set

the prior, P (data).

Instead of treating α as a user set parameter a prior

may be applied and Gibbs sampling used to estimate

it, using the technique of Escobar and West (1995).

The prior on α is a gamma distribution, G(a, b). This

method proceeds by first sampling a quantity η given

the current concentration, and then resampling the con-

centration given η. η given the concentration, α, is given

in terms of the beta distribution, β(., .)

η|α, k, n ∼ β(α+ 1, n) (10)

where k is the number of classes that currently exist and

n the number of examples distributed over the classes.

α given η is then a mixture of two gamma distributions,

Γ (., .)

α|η, k, n ∼ πΓ (a+ k, b− log(η))

+ (1− π)Γ (a+ k − 1, b− log(η)) (11)

where the ratio of the mixing terms is given by

π

1− π
=

a+ k − 1

n(b− log(η))
(12)

Given a prior the mean of a number of Gibbs samples is

used, after a burn in period Geman and Geman (1984).
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In this work a weakly-informative prior of Γ (1, 1) is

used, with 128 samples used for both burn in and sam-

pling the mean; for initialisation the concentration of

the previous query is used.

A prior, P (data), is also required. Whilst a proper

prior can certainly be used this term obviously paral-

lels active learning methods based on density estima-

tion (Such as Vatturi and Wong (2009)) - it defines

how likely a sample is something useful, rather than an

outlier. It follows that the prior must be selected based

on the data in the pool, for which it is in effect going

to be a density estimate. Given that real priors are of-

ten very simple, e.g. conjugate, a good density estimate

will be beneficial and, as there is no reason to use an

actual prior, a proper density estimate based on the

initial pool is preferred.

3.2 Misclassification probability

Given the class membership probabilities, Pn(.), which

include the probability of belonging to a new class, an

actual selection from the pool is required. The goal is

to balance finding new classes against refining existing

classes. A common approach to improving the exist-

ing model is to select instances that have a high de-

gree of uncertainty in their classification given the cur-

rent model. The most popular method is the entropy

method, but entropy cannot be applied when there is

a probability of an unknown class, at least not without

the introduction of a free parameter. Several alternative

approaches to entropy exist (Settles, 2009). One such

approach is to calculate the probability of classifying

an instance incorrectly. For instance this approach was

implicitly used by Lewis and Gale (1994) for the pur-

pose of text classification. They described it in terms

of selecting instances with class probabilities that are

closest to 0.5, which is equivalent. To include the pos-

sibility of a new class this idea has to be considered

explicitly, and proper consideration of multiple classes

has to be made.

Two assumptions are made - firstly that the clas-

sifier will select the class to which it has assigned the

highest probability, noting that this only includes known

classes, and secondly that the calculated distribution is

an accurate estimate of what the true class of the in-

stance could be, noting that it includes the possibility

of a new class. It is then a simple matter to calculate

the probability of incorrectly classifying an instance,

P (wrong|d) = 1− Pn(c′|d) (13)

c′ = argmax
c∈C

Pc(c|d) (14)

where Pn(c|d) is the probability of the instance belong-

ing to the selected class as calculated above, whilst

Pc(c|d) is the probability calculated by the classifier,

typically using Bayes rule with a P (c) term. If P (c)

weights classes by the number of instances seen then

Pn(c|d) and Pc(c|d) will be equivalent, other than Pc
excluding the probability of a new class and hence be-

ing normalised differently. Alternatively, if a different

prior on class probability is assumed, e.g. a uniform

distribution, then this will not be the case.

It is important to note that the proposed misclas-

sification probability (denoted as P (wrong) hereafter)

based active learning criterion is different from a con-

ventional uncertainty criterion that focuses only on bound-

ary refinement for existing classes. This is because Pn(c|d)

includes the probability of the instance belonging to a

new class (denoted as P (new)), which the classifier can

never select. If the P (new) value is high, the P (wrong)

value will also be high; similarly if the P (new) value is

low but the classifier is uncertain, so that none of the

class probabilities are high, a high P (wrong) will again

be generated. Therefore the value of P (wrong) is deter-

mined by two factors: the likelihood that the instance

belongs to an unknown class, and how uncertain the

current classifier is about the instance. Which of these

two dominates is driven by the concentration param-

eter. Specifically, when it is high relative to the num-

ber of labelled instances selection becomes equivalent

to using P (new) directly, but as it heads to zero only

classification uncertainty is considered, and the bound-

aries are refined. In practice the concentration param-

eter relative to the instance count tends to start high

and drop to a low but constant level as the number of

queries increases, i.e. as expected it starts by finding

new classes, but as it sees more data and stops finding

them it refocuses on boundary refinement.

3.3 Selection

Given the calculation of P (wrong) for every item in the

pool a specific item still needs to be selected, so it can

be labelled. The obvious solution is to select the exem-

plar with the highest value of P (wrong), as the most

useful. Experiments show this to be suboptimal - in-

stead a soft selection strategy is used, where a random

selection from the pool is made, weighted by P (wrong).

The choice is made because soft selection tends to pro-

vide better results, though it does depend on the prob-

lem. Hard selection is problematic because outliers of-

ten look like good candidates for new classes, and hence

have a high P (wrong) score, when they should proba-

bly be ignored. Soft selection avoids this issue as groups
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of samples with a moderate P (wrong) score have a to-

tal weight larger than that of any given outlier, so the

likelihood that a member of these groups will be chosen

is greater than for the outliers. This can be seen as a

density weighting, to avoid classifying exemplars that

are irrelevant.

Implicit in this strategy is the assumption that the

classifier assigns a single class to each exemplar, when

the requirements of P (wrong) require that it actually

outputs a probabilistic assignment. It is relatively easy

to make the conversion, but this actually compromises

performance, because in testing a single class is assigned

to each exemplar - unsurprising the approach works

better if it uses the same assumptions made when test-

ing it. A further assumption is made that the classifier

will give an accurate estimate, which is clearly not true,

especially when few queries have been made. However,

if a Bayesian classifier is used it will express its uncer-

tainty, and P (wrong) will react accordingly, to improve

that uncertainty and obtain a better classifier. Whilst

non-Bayesian classifiers typically lack such a measure a

suitable estimate of confidence can often be obtained.

3.4 Stopping Conditions

Active learning is concerned with limited resources -

the fact that it takes time/money/energy to provide

ground truth information for a classification algorithm.

Eventually the querying has to stop. Three common

options can be considered:

– Query budget: A fixed number of queries are per-

formed.

– Sufficient performance: Enough queries are per-

formed for classification performance to surpass a

threshold. It can be estimated using n fold cross val-

idation once enough queries have been performed to

get an accurate enough estimate.

– Cost-benefit analysis Dupuit (1952): In many

situations misclassification can have a directly at-

tributed cost, as can providing further labelled ex-

emplars - the total cost can then be minimised. To

exemplify a widget factory may have a classifier to

detect faulty products, alongside a given defect rate.

The defect rate multiplied by the false negative rate

of the classifier will give the percentage of faulty

products sent to customers - multiply this by the

sales projections and the cost of handling a return

and you obtain the money wasted by the classifiers

mistakes. The false positive rate should also be fac-

tored in, in terms of throwing out usable widgets.

Given the cost in employee time to train the clas-

sifier we can now work out at what point the cost

of further training exceeds the value obtained (For

a given product lifespan.), and hence when to stop

training. Complex effects can exist, e.g. sending cus-

tomers faulty products can generate bad publicity,

making sales a function of the classifiers false prob-

ability rate.

The choice of scheme is scenario specific however, and

as such we will not be exploring it further. However,

by presenting results to a deep enough query count the

above stopping conditions are implicitly represented us-

ing graphs of inlier rate against query count (Figure 7).

Query budget is represented by seeing which is highest

after a given number of queries (a vertical line), whilst

performance is given by which algorithm crosses a given

threshold first (a horizontal line). A cost benefit anal-

ysis is often represented by a straight line at an angle

set by the relative costs of failure and further training.

More sophisticated cost-benefit models can generate an

arbitrary curve.

3.5 Demonstration

The presented approach, P (wrong), is now demonstrated

and visualised using a 1D problem. Specifically, the 4D

3-class iris problem of Fisher (1936) is used, as obtained

from the UCI repository (Frank and Asuncion, 2010).

It is a classification problem where the task is to iden-

tify flower species based on flower shape measurements.

Principal component analysis (PCA) is used to reduce

the problem to a single dimension3 - the resulting data

set is visualised in Figure 3(a). Each line represents a

member of the data set - horizontal position indicates

the position projected to by PCA, whilst the three pri-
mary colours represent the three classes.

Many approaches can be selected for classification

- for this and the other experiments the incremental

kernel density estimation (KDE) method of Sillito and

Fisher (2007) is used. It uses a Gaussian kernel whilst

the number of mixture components is capped, to main-

tain a constant time incremental algorithm. When the

cap is passed4 mixture components are optimally merged,

in terms of minimising the Kullback-Leibler divergence

of the approximation. One density estimate over the

pool is used as the pseudo-prior5, whilst each class also

has a density estimate built from its members. A uni-

form prior over class assignment is used and kernel size

3 It is not really solvable after this, as the classes have a lot
of overlap, but it is sufficient to illustrate the inner workings
of the presented approach, whilst reducing it to 1D allows for
a clean visualisation.
4 We set this classifier parameter to 32.
5 A density estimate that we hallucinate is the prior for the

classification algorithm.
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(a) Data set

(b) After 1 query

(c) After 2 queries

(d) After 3 queries

(e) After 5 queries

(f) After 12 queries
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(g) Interest in new class discovery

Fig. 3 1D demonstration of the problem with 3 classes, with
probability distributions. The prior is constant, indicated by
the dot-dash grey line, whilst the distributions for the 3
classes use the 3 primary colours, dashed. Orange dots are
used for the P (new) metric, whilst P (wrong) is given in black.

is selected using leave one out cross-validation. Bayes

rule is used to calculate the probability of belonging to

each class, and the class with the highest probability

selected as the answer.

Figures 3(b) through to 3(f) show the state of the

system after the given number of queries. They are

plots of probability values calculated for every 1D fea-

ture vector, where each plot has been normalised to fill

the available height. Firstly, the prior is given by the

grey line, and it remains constant as the algorithm runs.

Each of the known classes is coloured using a primary

colour. The P (new) curve, giving the probability that

a point on the line is going to belong to a new class,

is given in orange whilst the P (wrong) curve is given

in black. P (new) has been included as it makes the be-

haviour of P (wrong) with regards to boundaries clearer.

The P (wrong) graph indicates how interested in a point

the presented algorithm is, with the high points being

the positions the algorithm is likely to select for its next

query, conditional on such locations actually appearing

in the data set. Figure 3(g) plots the sampled concen-

tration normalised by the concentration plus the num-

ber of labelled instances, i.e. the weight assigned to new

classes, given the number of queries made.

Firstly, a new class is found in each of the first 3

queries, and with the weight assigned to finding new

classes dominating the two metrics have identical in-

terests (the orange line is underneath the black line).

After the third query a slight difference is evident in

that P (wrong) is more interested in examples that are

on the boundary between the blue and green classes.

The state after 5 queries demonstrates that, as the al-

gorithm loses interest in finding new classes, as plotted

in figure 3(g), the two approaches start to differ, with

P (wrong) showing greater interest in the classification

boundaries whilst still maintaining an interest in areas

where new classes could be. By 12 queries this is much

more pronounced. This demonstration clearly shows the

various behaviours expected - an interest in areas where

either new classes could be or the boundary could be

refined, with the latter gaining dominance as it loses in-

terest in finding new classes. Figure 3(g) demonstrates

how the level of interest in finding new classes drops as

the algorithm makes more queries6.

4 Evaluation

Results are given for 13 data sets, consisting of the fol-

lowing classification problems:

– glass: Infer glass type given its chemical contents,

for forensic investigation. Features include chemical

properties and how it breaks.

– ecoli: Predict which part of a cell contains a protein

localisation site, for E.coli.

– segment: Labelling regions from images of outdoor

scenes, with labels such as grass, path and sky. Input

6 Note that concentration cannot be calculated until at
least two classes have been found, hence the jump in the
graph at that time.
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Problem Origin Classes Dimensions Train Test Largest Smallest Queries
glass Frank and Asuncion (2010) 6 10 107 107 34.58% 3.74% 107
ecoli Frank and Asuncion (2010) 8 7 168 168 48.21% 0.60% 150

segment Frank and Asuncion (2010) 7 18 318 317 47.80% 0.94% 150
pageblocks Frank and Asuncion (2010) 5 10 3649 1824 89.28% 0.49% 150
covertype Frank and Asuncion (2010) 7 10 2500 2500 24.36% 3.56% 150

thyroid Frank and Asuncion (2010) 3 21 3772 3428 92.47% 2.47% 150
winequality Frank and Asuncion (2010) 6 11 2447 2446 45.24% 0.37% 150

letters Frank and Asuncion (2010) 26 16 2620 6656 13.74% 0.31% 200
shuttle Frank and Asuncion (2010) 7 9 10000 14500 77.72% 0.03% 150
kdd99 Frank and Asuncion (2010) 15 113 16825 16825 51.46% 0.04% 200

gait Hospedales et al. (2011) 9 25 411 1942 48.66% 2.92% 150
digits Hospedales et al. (2011) 10 25 8184 5000 50.05% 0.10% 200
faces Huang et al. (2007) 330 32 5195 5195 10.95% 0.04% 1000

Table 1 Details of the data sets used. Origin gives the source - most have come from the UCI repository. Classes is the
number of classes in the classification problem, dimensions the length of the feature vector. Train gives the number of training
exemplars, which is the size of the initial pool; test the number used for testing. Largest is the percentage of exemplars that
belong to the largest class, smallest the percentage that belongs to the smallest class, to indicate how imbalanced the problem
is. Queries is the number of queries performed - the values were chosen to match previous papers (Hospedales et al., 2011;
Haines and Xiang, 2011; Loy et al., 2012), with the other data sets set consistentantly.

is a small patch of pixels; output is the label for the

centre pixel of the patch.

– pageblocks: Classifying regions from document scans,

e.g. as text, picture or graphic. Features include

colour ratios and measures of texture.

– covertype: Predicting forest cover type given geo-

graphic information, such as elevation and soil type.

– thyroid: Determining the disease that a thyroid has

given observed and measured properties.

– winequality: Predict the quality of Portuguese wine

given various chemical properties. Strictly speaking

this is a quantised regression problem.

– letters: Recognising handwritten letters from the

English alphabet. Input is images of each letter.

– shuttle: Infer the state of part of the space shuttles

propulsion system, given various sensor readings, as

relating to the Challenger disaster.

– kdd99: Data set used for the 3rd Knowledge Dis-

covery and Data Mining Tools Competition - uses a

simulation of a military network with the goal being

to detect intrusions given tcp dump data. The origi-

nal data set included multinomial attributes, which

have been concatenated as part of the feature vec-

tor, hence the high dimensionality of the problem.

– gait: Inferring the quantised walking direction from

aligned silhouettes that have been averaged over

multiple frames (input is a greyscale image), as in

Han and Bhanu (2006). This data set was sampled

to be imbalanced, such that each class is half the

size of the next larger.

– digits: Recognising the handwritten digits, 0 − 9,

given images of the digits. This data set was sampled

to be imbalanced, such that each class is half the size

of the next larger.

– faces: Large scale face recognition from images ex-

tracted using a face detector. We use the prepara-

tion given by Guillaumin et al. (2009). Additionally

people who have less than 10 entries have been re-

moved.

In all cases the original features provided by the data

sets have been used, though some of the vision prob-

lems have been subjected to dimensionality reduction,

by principal component analysis (to avoid using an en-

tire image as input). The last data set, faces, is an exam-

ple of an extremely large scale computer vision problem,

having over 300 classes. Various statistics summarising

the problems are given in table 1 - note that they vary

in size, number of classes and class imbalance.

For testing we use the incremental KDE method of

Sillito and Fisher (2007), as described in subsection 3.5

to classify, via Bayes rule, and also to provide a pseudo-

prior. Testing consists of running through the active

learning loop and using a separate test set to mea-

sure the balanced classification performance after each

query. Different problems are run to different query

depths, depending on the number of classes in the data

set - see table 1. Multiple runs are performed7, to ac-

count for the variability with the stochastic algorithms,

and the results averaged. Finally, two graphs may be

plotted - either the balanced inlier rate8 (classification)

or the number of classes discovered (discovery) can be

7 32 in all cases except for kdd99 and faces, where it is 24
and 16 respectively due to their size.
8 Balanced inlier rate is calculated as the average inlier rate

for each class in the training set. Inlier rate is the number of
correct classifications divided by the number of exemplars
being classified. This can be interpreted as recall generalised
to 3+ classes.
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graphed against the number of queries. These graphs,

for all data sets, may be found in figures 7 and 8. We

also report the areas under these graphs, noting that

strong classification performance is better aligned with

the goal of training as good a classifier as possible with

as few queries as possible.

Four algorithms are compared against the presented

approach, P (wrong):

– random: Random selection - effectively a dumb al-

gorithm that provides a baseline for performance.

– entropy: Calculates the entropy of the class distri-

bution of each item in the pool, selecting the exem-

plar that requires the most information to encode

draws from. This approach attempts to refine the

boundary between classes.

– likelihood: Selects the exemplar from the pool that

has the lowest probability of belonging to the cur-

rent model - it selects outliers. This approach at-

tempts to find new classes.

– Hospedales et al. (2011): Balances class discov-

ery and boundary refinement by selecting between

one model for each, based on current model per-

formance. A generative model (kernel density es-

timate.) with likelihood based selection is used for

class discovery, whilst a discriminative model (svm)

with entropy based selection is used for boundary re-

finement. Selection is entirely probabilistic, includ-

ing the use of Gibbs functions on the active learning

criteria. Results are only available for three of the

datasets; it has the unfair advantages of having been

tuned for them and using a better classifier.

Results are given by the graphs in Figure 7, with dis-

covery graphs additionally given in Figure 8. Table 2

summarises the classification performance by giving the

area under the graph; Table 3 does similarly for discov-

ery performance. The classification graphs give the bal-

anced inlier rate of the classifier trained after x queries,

whilst the discovery graphs give the number of classes

found after x queries. In both cases an average of many

runs is presented. The presented approach is the best

for 9 out of 14 problems. Its nearest competitor is like-

lihood, which wins the remaining 4. In the scenarios in

which it misses first place P (wrong) always comes sec-

ond - it is consistently good. The same cannot be said

for likelihood, which on two occasions comes last. An

approximate ordering by complexity has been applied

to the problems, with the last few being scenarios where

active learning is of the greatest value - for all of these

examples P (wrong) takes the lead. It wins for four of

the six vision problems, segment and letters being the

exceptions.

The faces data set is clearly the most challenging. It

is a naturally imbalanced data set, where instances with

less than 10 entries have been culled9. This chops off its

thick tailed class size distribution - 47% of the data set

has less than 20 items in the training set, meaning that

a random selection has almost even odds of drawing

from an approximately uniform set. As a result random

does very well, as when it draws from a uniform distri-

bution random selection has a good chance of finding a

new class with every query. It only obtains second place

however, with P (wrong) in first, which is a strong re-

sult - entropy and likelihood both fail to even match

random. Both random and P (wrong) perform random

selection at the start - on average P (wrong) finds 72.0

individuals after 100 queries, whilst random manages

68.1. This demonstrates that P (wrong) is focused on

discovery, more so than random. The likelihood ap-

proach is comparable to random, at 68.4 classes dis-

covered after 100 queries, whilst the entropy approach

takes the lead, finding 76.0 on average. Entropy does

poorly despite finding more people however - it focuses

on refining the initial query area, and ignores the rest

of the search space.

The segment data set exemplifies the data term for

the simultaneous segmentation and labelling of both

things and stuff in an image (Picard and Minka, 1995).

It explores the first step of such an approach, where

a label is assigned to each pixel independently, before

regularisation is applied, typically by some kind of con-

ditional random field (Ladický et al., 2009). The pre-

sented approach narrowly losses out to the likelihood

approach. As shown in Figure 7 P (wrong) matches,

and slightly exceeds, likelihood most of the time, ex-

cept for an area later in the query sequence where like-

lihood demonstrates an advantage. This occurs after

a region where likelihood is doing much better at dis-

covery (Figure 8), suggesting that likelihood, which is

always focused on discovery, gains an advantage at this

time because P (wrong) is focusing on boundary refine-

ment before it has discovered all classes. Using a DP

prior on the classes, an assumption that class sizes have

a logarithmic falloff, is not satisfied by this data set - it

has several large classes, which are the stuff, whilst the

things are made up of many smaller but similarly sized

classes. Such a mismatch between the prior and the

data leads P (wrong) to incorrectly balance the goals

of boundary refinement and discovery, though not by

much. This problem also highlights a further issue -

it does not make sense to ask the oracle for the label

of a single pixel. In practise, given algorithms such as

GrabCut (Rother et al., 2004), a user would be better

utilised to label a large area of an image for each query.

9 Note that culling is for the entire data set, whilst separa-
tion into training and testing was purely random, so classes
can have less than 10 entries in the pool.
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Problem Random Entropy Likelihood Hospedales et al. (2011) P (wrong)
glass 70.5 (3) 61.6 (4) 72.2 (2) 74.5 (1)
ecoli 83.4 (3) 66.9 (4) 90.0 (1) 84.4 (2)

segment 90.7 (3) 67.3 (4) 109.4 (1) 107.7 (2)
pageblocks 64.6 (4) 70.7 (3) 76.6 (2) 78.5 (1)
covertype 71.2 (2) 50.9 (4) 62.4 (3) 72.6 (1)

thyroid 76.8 (2) 65.7 (4) 75.3 (3) 80.1 (1)
winequality 36.8 (3) 33.3 (4) 37.6 (1) 37.2 (2)

letters 59.8 (3) 11.1 (4) 75.8 (1) 66.9 (2)
shuttle 53.5 (4) 51.8 (5) 79.4 (2) 61.8 (3) 79.8 (1)
kdd99 92.1 (4) 96.1 (3) 96.9 (2) 146.6 (1)

gait 78.9 (3) 75.3 (4) 56.5 (5) 84.8 (2) 88.4 (1)
digits 54.6 (5) 57.1 (4) 61.9 (3) 69.5 (2) 69.7 (1)
faces 131.2 (2) 125.4 (3) 101.2 (4) 136.6 (1)
wins 0 0 4 0 9

Table 2 Results, given as the area under the number of queries-inlier rate graph. The numbers in brackets give the positions.
The results of Hospedales et al. (2011) have been included where available.

Problem Random Entropy Likelihood Hospedales et al. (2011) P (wrong)
glass 581.1 (3) 480.9 (4) 611.1 (1) 598.5 (2)
ecoli 946.6 (3) 793.8 (4) 1057.2 (1) 1011.7 (2)

segment 875.2 (3) 665.2 (4) 991.2 (1) 945.4 (2)
pageblocks 535.8 (4) 537.1 (3) 735.6 (1) 629.4 (2)
covertype 983.8 (2) 825.8 (4) 978.2 (3) 993.2 (1)

thyroid 397.2 (4) 417.8 (2) 420.4 (1) 409.5 (3)
winequality 695.5 (3) 603.2 (4) 837.2 (1) 714.2 (2)

letters 3580.0 (3) 367.0 (4) 4443.4 (1) 3848.8 (2)
shuttle 486.2 (4) 423.5 (5) 950.5 (1) 933.2 (2) 923.4 (3)
kdd99 1490.6 (4) 1857.0 (3) 2418.0 (2) 2546.1 (1)

gait 1170.5 (5) 1183.8 (3) 1171.7 (4) 1253.1 (1) 1241.9 (2)
digits 915.2 (5) 974.0 (4) 1060.2 (3) 1207.4 (1) 1133.6 (2)
faces 183859.9 (3) 193598.0 (2) 179906.6 (4) 194776.3 (1)

Table 3 Results, given as the area under the number of queries-discovered classes graph. The numbers in brackets give the
positions. The results of Hospedales et al. (2011) have been included where available.

Such scenarios invite an active learner that selects bags

of exemplars to label, rather than a single label each

time.

The initial selections of two vision-related data sets

are visualised in Figure 4. Comparing the three ap-

proaches for the gait problem it is interesting to note

the existence of gait energy images that have some kind

of glitch, caused by a tracking failure or occlusion. The

likelihood approach spends most of its time exploring

these - because it is interested in outliers. Consequen-

tially, it is wasting its queries on exemplars that are

likely to confuse the classifier. Focusing on the digits

problem note that P (wrong) only explores 4 classes in

the queries shown, the digits 0, 1, 2 and 3. Firstly, this

data set has been geometrically distributed, with class

’0’ having the most entries, class ’1’ the second most,

at half as many, and so on. So it starts by exploring the

most common classes, which makes sense. Furthermore

note that it queries ’2’ repeatedly, yet ’1’ only once, de-

spite ’1’ being twice as common. This can be explained

by the ’1’ class having relatively little variety when the

’2’ class has considerable variety, as demonstrated by

the queries - each one is different from the others. In-

deed, the zeroes are subject to the greatest querying

intensity, and show considerable variety.

Figure 5 plots

α

α+ q
(15)

against the number of queries made, where α is the

inferred concentration and q is the number of labelled

exemplars, which is of course equal to the query count.

This is effectively the weight assigned to discovering

new classes. In all cases the expected happens - at the

start it is very interested in discovering new classes, but

as the number of queries progresses its interest drops

and it focuses on refining the boundaries between the

known classes. The gait and digits problems have a sim-

ilar number of classes, and have similar profiles to their

interest curve. In the case of faces however, which has

dramatically more classes, the interest remains high for

all of the 1000 queries shown, as P (wrong) is continuing

to hunt for new classes.
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Fig. 4 The selected problem instances by one run of P (wrong), outlier and entropy, as indicated at the side, for the first 15
queries made. Top three rows show gait, bottom three show digits - the query number is beneath each image.
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(b) digits
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(c) faces

Fig. 5 Plots of the inferred concentration value normalised by the concentration plus the number of instances that have already
been labelled. It reflects how much effort P (wrong) is putting in to finding new classes.

Discovery performance is given in Figure 8, with

the corresponding areas under the graphs in Table 3.

P (wrong) is not intended to optimise discovery. It in-

stead attempts to obtain a good classifier with few

queries, noting that discovering new classes will im-

prove classification performance, as will improving the

classification boundaries of existing classes - it effec-

tively makes a trade off between these two actions, and

in effect discovery performance is reduced so it can build

a better classifier. The likelihood technique contrasts

with this as it is only interested in discovery, so it is

not surprising that likelihood gets the higher area the

vast majority of the time. Indeed, a discovery focused

algorithm such as Vatturi and Wong (2009) is expected

to take the crown - for shuttle it has a winning score of

970.5. For the last three problems the presented takes

the lead. This certainly makes sense for faces, as the

high class count means that a discovery-oriented ap-

proach is preferred, so the presented chooses to focus

on discovery rather than boundary refinement.

To follow up subsection 3.3 Figure 6 demonstrates

that soft selection is better than hard selection, using

the glass problem. It also includes KDE selection - this

involves reweighting the samples using a kernel density

estimate (KDE) of the P (wrong) weighted pool mem-

bers (Using Gaussian kernels). This demonstrates the

reasoning behind soft selection, by emulating it deter-

ministically - this reweighting strategy in effect does

approximately the same thing as soft selection10.

10 Whilst this strategy can always beat the presented ap-
proach it does so by introducing a scale parameter, which
has to be selected for each problem. This is inappropriate, as
doing multiple runs to find the best parameter obviates the
entire purpose of active learning.
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Fig. 7 Graphs of inlier rate against number of queries, to present the classification performance of the algorithm.
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Fig. 8 Graphs of classes found against number of queries, to present the discovery performance of the algorithm.



16 Tom S. F. Haines, Tao Xiang

0 20 40 60 80 100Queries
0

0.2

0.4

0.6

0.8

1

In
lie

r 
R

a
te

Hard Selection
Soft Selection
KDE Selection

Fig. 6 Comparison of different selection strategies. The
graph shows the inlier rate of the test set on the y axis, as a
function of the number of queries made, on the x axis, noting
that the averages of many runs are shown. The area under
the graphs is 74.266 for hard, 74.519 for soft and 75.891 for
KDE.

5 Conclusions

A state of the art active learning criterion has been

presented and analysed, backed up by extensive results.

It has all the properties that are desired for real world

use:

– It both discovers unknown classes and refines the

boundary between the known, automatically bal-

ancing these goals to maximise classification per-

formance.

– The prior over concentration is the only parameter,

and it does not need tuning - it was left as Γ (1, 1)

throughout.

– Consistent top-tear performance on every problem

tried. This and the above mean that it can be used

without modification on many problems. Given the

nature of active learning, where trying different ap-

proaches mitigates its purpose, this confidence to

treat P (wrong) as a black box is essential.

There are some limitations with P (wrong). Firstly, it

is designed to work with imbalanced data - if run with

balanced data it will continue to work, but random se-

lection will typically do better. It aims to build as good

a classifier as it can with the least number of queries -

this is not the same as trying to discover one instance

of every class. If discovery is the aim then better ap-

proaches exist, though there is some evidence that for

certain problems, such as faces, P (wrong) can do better

than some discovery oriented approaches at discovery.

Finally, the classifier needs to provide probabilistic in-

formation, though this is typically not an issue, as all

generative approaches do so by definition, whilst dis-

criminative approaches can provide it in some cases,

e.g. random forests (Ho, 1995; Breiman, 2001), or be

altered to provide it in others, e.g. support vector ma-

chines (Boser et al., 1992; Platt, 1999)

Future work could consider changes to the core al-

gorithm, to improve performance. Alternative loss func-

tions or a different QBC formulation for instance. This

approach can be adjusted to other scenarios - Loy et al.

(2012) already applied a variant of P (wrong) to stream-

based active learning, with a Pitman-Yor assumption

instead of a Dirichlet process assumption and a QBC-

like selection strategy. In demonstrating a (slight) ad-

vantage from using a Pitman-Yor process this suggests

using more sophisticated priors that better match the

expected structure of the data11. Whilst separation from

the classification model is a definite advantage there are

scenarios in which a tighter integration would prove

beneficial. Variations designed for semi- or weak- su-

pervision would be invaluable.
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A Alternative choices

We now discuss some of the alternatives to the presented
approach that were considered. Firstly, as discussed in sub-
section 3.3, one variant lead to an improvement, specifically
soft selection over hard selection. Soft selection can be taken
further - a parameter can be introduced as a power of the
P (wrong) value, to emphasis or de-emphasis large values.
This can be tuned to get better results, but as a problem
specific parameter it is of no value to active learning, as pa-
rameter tuning is incompatible with a single set of queries.
The KDE variant in figure 6 is similar, except its parameter
is fatally sensitive.

The probability of being wrong can be interpreted as an
expectation over zero-one loss - alternative loss functions can
be considered. Hinge loss for a multinomial distribution can
be defined as the difference between the probability of the
correct answer and the highest probability in the distribution,
which is 0 if the correct answer has the greatest probability.
It often undermined performance however.

Query by committee (QBC) was explored by Loy et al.
(2012); however, their formulation really served as a prob-
abilistic selection threshold function. Using multiple models
it can be formulated to measure variance, so that P (wrong)
also focuses on areas with high model uncertainty12. Noting
that there are two estimates - an estimate of what the ac-
tual class membership is, including the possibility of being
something new, and an estimate of what the classifier is go-
ing to assign, we can use different models from a committee
for these two roles. A QBC variant can then be defined using
a committee where all assignment combinations are summed
out, so a high QBC P (wrong) score is obtained at boundaries
between classes, in areas where new classes could be found,
and where the current model has high uncertainty. This un-
fortunately resulted in too much emphasis being placed on
boundary refinement.

For some problems the above variants are better. The is-
sue is there is no way to predict which problems in advance,
and for some problems they are much worse. Active learn-
ing is a scenario where you choose a method and apply it to
your problem once - multiple runs require that the queries for
each be satisfied, which is contrary to the goal. We therefore
present P (wrong) as formulated, as it is consistent - it never
performs poorly, and usually gives top tier performance. Fu-
ture work could consider inferring which data sets work best
with different active learners.

12 With KDE this is obtained by training several classifiers
on bootstrap samples from the training set. This achieves the
goal of measuring model variance, but damages performance,
so a fully trained version is kept to do actual classification.
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